

The history of revision change for the specification

Date	Revision	Changes
2022/06/22	A0	New approval

DOCUMENT : VRNSGG

REVISION : A0

1

1/4W, 0805, Thick Film Chip Resistor

Features / Applications :

- Lead free meet RoHS compliant, Halogen free
- AEC-Q200 qualified
- Automotive applications

Electrical Specifications:

Power Rating*	Resistance Values Series	Resistance Tolerance	Resistance Range (Ω)	Temperature Coefficient of Resistance (ppm /°C)	Operating Temperature Range	Max. Operating Voltage**
			1.0~9.76	± 200		
1/4W	1/4W E96 series &	± 2.0% (G) ± 5.0% (J) ± 0.5% (D)	10~10M	± 100	-55°C to 155°C	150V
Jumper	Resistance		Rated current		Operating Temperature Range	
Below 50 mΩ		50 mΩ	2A		-55℃ to 155℃	

Note: *Package Power Temperature Derating Curve

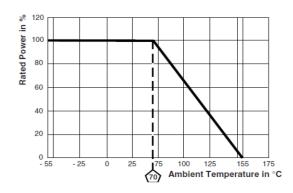


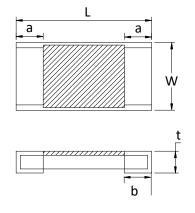
Figure 1. : Power Temperature Derating Curve

Note: **Resistors shall have a rated DC or AC(rms.) continuous operating voltage corresponding to the power rating, as calculated from the following formula

 $V = \sqrt{P \times R}$ Where V : Rated voltage (V)

P : Rated power (W)

R : Nominal resistance (Ω)


If the voltage so obtained exceeds the maximum operating voltage, this maximum voltage shall be the rated voltage.

DOCUMENT : VRNSGG

Outline Drawing:

Code Letter	Dimension
L	2.0± 0.20
W	1.25± 0.10
t	0.55 ± 0.10
а	0.30± 0.20
b	0.40± 0.20

Unit: mm

Type Designation:

VRNS XXXX Χ (5)

(1) (2) (3) (4)

Note:

(1) Series No. = Automotive

(2) Size: G = 0805

(3) Power Rating : G = 1/4W

(4) Resistance value : 000 = Jumper ; 103 = 10 k Ω (E24) ; 1131 =1.13k Ω (E96)

3

(5) Tolerance: D= $\pm 0.5\%$; F = $\pm 1\%$; G= $\pm 2\%$; J = $\pm 5\%$; X = Jumper

Note: If the resistance value of E24 and E96 coincide, E24 shall prevail.

Characteristics:

Electrical

lhom	Specification and Re	quirement	Took Makk ad	
Item	Resistor Jumper		Test Method	
Temperature Coefficient (TCR)	As follow specification		JIS-C-5201 +25°C/+125°C.	
Short Time Overload	\triangle R: \pm (1.0% + 0.05 Ω) Without damage by flashover, spark, arcing, burning or breakdown	Max. 50m $Ω$	JIS-C-5201-1 4.13 2.5 x rated voltage for 5 seconds.	
ESD	ΔR: ±(3.0% + 0.10Ω)	Max. 50m $Ω$	AEC-Q200-002 Human body, 2KV.	

DOCUMENT : VRNSGG

Automotive Chip Resistor

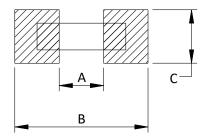
Mechanical

lkana	Specification and Requ	T-+ Maskd		
Item	Resistor Jumper		Test Method	
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder		J-STD-002 1.155 $^{\circ}$ C/4hr \rightarrow 245 \pm 5 $^{\circ}$ C for 3sec 2.SA 4hr \rightarrow 245 \pm 5 $^{\circ}$ C for 3sec 3.SA 4hr \rightarrow 260 \pm 5 $^{\circ}$ C for 30sec	
Resistance to Solder Heat	\triangle R: ±(1.0% + 0.05Ω)	Max. 50m $Ω$	MIL-STD-202 Method 210 Temperature: 270°C, Dipping time: 10sec.	
Vibration	\triangle R: \pm (0.5% + 0.05 Ω) Without distinct damage in appearance	Max. 50m $Ω$	MIL-STD-202 Method 204 5G's for 20 minutes, 12 cycles each of 3 orientations. Test from 10- 2000Hz.	
Mechanical Shock	\triangle R: \pm (0.5% + 0.05 Ω) Without distinct damage in appearance	Max. 50m $Ω$	MIL-STD-202 Method 213 100G's peak value, 6ms, Half-sine waveform, 12.3ft/sec.	
Board flex	$\triangle R \colon \pm (1.0\% + 0.05\Omega)$ Without mechanical damage such as break	Max. 50m $Ω$	AEC-Q200-005 Flexure holding time:60sec, 2mm	
Terminal strength	a. Without mechanical damage such as break b. Judgement standard : Ac/Re= 0/1		AEC-Q200-006 Shear force:17.7N, duration:60sec	

DOCUMENT : VRNSGG

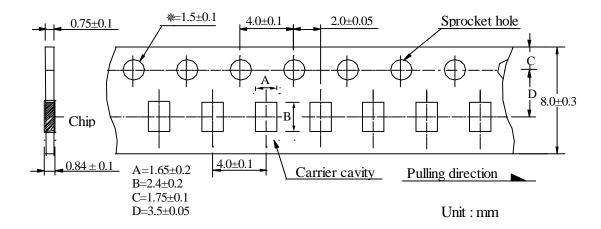
Automotive Chip Resistor

Endurance


lho	Specification and Requirement		T	
Item	Resistor	Jumper	Test Method	
Temperature Cycling	ΔR: ±(1.0% + 0.05Ω)	Max. 50m $Ω$	JESD22 Method JA-104 1000 cycles, (-55°C~125°C) 30 min maximum dwell time at each temperature.	
Biased Humidity	\triangle R: ±(3.0% + 0.05Ω)	Max. 50m $Ω$	MIL-STD-202 Method 103 1000 hours, 85°C/85%R.H, applied for 10% rated power.	
Damp heat, steady state	\triangle R: ±(3.0% + 0.05Ω)	Max. 50m $Ω$	IEC 60068-2 (40 ± 2) °C; (93 ± 3) % RH; 56 days.	
Operational Life	ΔR: ±(3.0% + 0.05Ω)	Max. 50m $Ω$	MIL-STD-202 Method 108 Temperature:70°C, duration:1000hrs, 1.5Hour ON, 0.5Hour OFF Load condition: Rated power.	
High temperature exposure	ΔR: ±(1.0% + 0.05Ω)	Max. 50m $Ω$	MIL-STD-202 Method 108 Temperature:155°C(Refer to spec) Duration:1000hrs	
Resistance to solvents	Without mechanical and distinct damage in appearance		MIL-STD-202 method 215 Type of solvents: Aqueous wash chemical. OKEM clean or equivalent. Do not use banned solvents.	

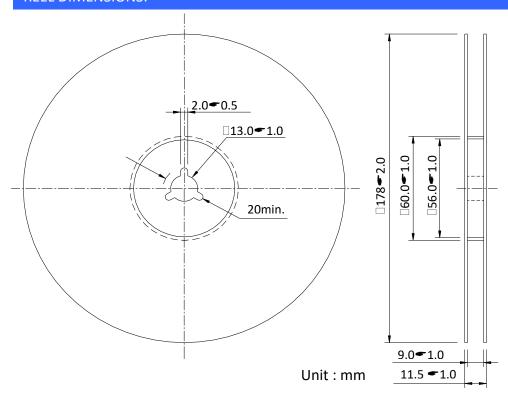
Note : Measurement at 24 ± 4 hours after test conclusion for all reliability tests-parts.

DOCUMENT : VRNSGG


Recommend Land Pattern Dimensions:

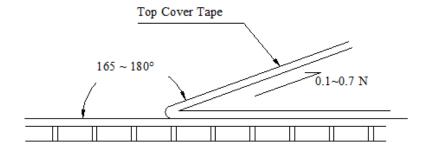
А	1.3
В	3.1
С	1.3

Unit: mm


TAPE PACKAGING DIMENSIONS:

DOCUMENT : VRNSGG

REEL DIMENSIONS:


Numbers of Taping: 5,000 pieces/reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

Peel force of top cover tape

The peel speed shall be about 300 mm/min. The peel force of top cover tape shall be between 0.1 to 0.7 N.

DOCUMENT : VRNSGG

Care Note:

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 30% to 80% R.H.) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Hydrogen chloride, sulfurous acid gas, and Hydrogen sulfide)

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification.
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.

DOCUMENT : VRNSGG